$12^{1}_{117}$ - Minimal pinning sets
Pinning sets for 12^1_117
Minimal pinning semi-lattice
(y-axis: cardinality)
Pinning semi lattice for 12^1_117
Pinning data
Pinning number of this loop: 4
Total number of pinning sets: 508
of which optimal: 1
of which minimal: 8
The mean region-degree (mean-degree) of a pinning set is
on average over all pinning sets: 3.12244
on average over minimal pinning sets: 2.75833
on average over optimal pinning sets: 2.5
Refined data for the minimal pinning sets
Pin label
Pin color
Regions
Cardinality
Degree sequence
Mean-degree
A (optimal)
•
{2, 3, 8, 11}
4
[2, 2, 3, 3]
2.50
a (minimal)
•
{1, 3, 4, 11, 12}
5
[2, 2, 3, 3, 3]
2.60
b (minimal)
•
{1, 3, 4, 8, 11}
5
[2, 2, 3, 3, 3]
2.60
c (minimal)
•
{1, 3, 4, 7, 11}
5
[2, 2, 3, 3, 4]
2.80
d (minimal)
•
{2, 3, 5, 11, 12}
5
[2, 2, 3, 3, 4]
2.80
e (minimal)
•
{2, 3, 5, 7, 11}
5
[2, 2, 3, 4, 4]
3.00
f (minimal)
•
{2, 3, 4, 11, 12}
5
[2, 2, 3, 3, 3]
2.60
g (minimal)
•
{2, 3, 4, 7, 10, 11}
6
[2, 2, 3, 3, 4, 5]
3.17
Data for pinning sets in each cardinal
Cardinality
Optimal pinning sets
Minimal suboptimal pinning sets
Nonminimal pinning sets
Averaged mean-degree
4
1
0
0
2.5
5
0
6
8
2.74
6
0
1
60
2.93
7
0
0
127
3.07
8
0
0
148
3.16
9
0
0
103
3.23
10
0
0
43
3.27
11
0
0
10
3.31
12
0
0
1
3.33
Total
1
7
500
Other information about this loop
Properties
Region degree sequence: [2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5]
Minimal region degree: 2
Is multisimple: No
Combinatorial encoding data
Plantri embedding: [[1,2,3,4],[0,4,4,5],[0,5,6,3],[0,2,7,8],[0,5,1,1],[1,4,8,2],[2,9,9,7],[3,6,9,8],[3,7,9,5],[6,8,7,6]]
PD code (use to draw this loop with SnapPy): [[3,20,4,1],[2,11,3,12],[14,19,15,20],[4,15,5,16],[1,13,2,12],[13,10,14,11],[7,18,8,19],[5,8,6,9],[16,9,17,10],[17,6,18,7]]
Permutation representation (action on half-edges):
Vertex permutation $\sigma=$ (15,4,-16,-5)(3,6,-4,-7)(14,7,-15,-8)(11,8,-12,-9)(20,9,-1,-10)(10,19,-11,-20)(2,13,-3,-14)(5,16,-6,-17)(12,17,-13,-18)(1,18,-2,-19)
Edge permutation $\epsilon=$ (-1,1)(-2,2)(-3,3)(-4,4)(-5,5)(-6,6)(-7,7)(-8,8)(-9,9)(-10,10)(-11,11)(-12,12)(-13,13)(-14,14)(-15,15)(-16,16)(-17,17)(-18,18)(-19,19)(-20,20)
Face permutation $\varphi=(\sigma\epsilon)^{-1}=$ (-1,-19,10)(-2,-14,-8,11,19)(-3,-7,14)(-4,15,7)(-5,-17,12,8,-15)(-6,3,13,17)(-9,20,-11)(-10,-20)(-12,-18,1,9)(-13,2,18)(-16,5)(4,6,16)
Loop annotated with half-edges
12^1_117 annotated with half-edges